Аннотация:
В некотором предположении о границе нулей $L$-функций Дирихле получены результаты об асимптотике числа целых точек в произвольных областях на поверхностях второго порядка общего вида. Метод основан на редукции к случаю простейших гиперболоидов. В качестве приложения получены результаты о распределении целых точек на поверхности вида
$$ x^3+y^3=u^2+v^2. $$