Аннотация:
Рассматривается задача о максимуме конформного инварианта
$$
2\pi\prod_{k=1}^nM(D_k,a_k)-\frac2{n-1}\log\prod_{1\leq k<l\leq n}|a_k-a_l|,
$$
для всех систем точек $\{a_1,\dots,a_n\}$ и всех систем $\{D_1,\dots,D_n\}$ неналегающих односвязных областей $D_k$, удовлетворяющих условию $a_k\in D_k$, $k=1,\dots,n.$ Здесь $M(D,a)$ – приведенный модуль области $D$ относительно точки $a\in D$. Предполагается, что $n\geq6$ четное и системы точек $a_1,\dots,a_n$ обладают высокой степенью симметрии. Библ. – 12 назв.
Ключевые слова:приведенный модуль области, конформный радиус области, конформный инвариант.