Аннотация:
В первой части работы рассмотрена модель минимального взаимодействия
между $U(1)$-калибровочным полем Черна–Саймонса и
некоторым внешним током частиц. Для решения уравнений калибровочного
поля в поперечной, вейлевской и кулоновской калибровках использованы
элементы аппарата внешнего исчисления.
Во второй части обсуждается модель, которую предложил Г. Семенофф
(скалярное поле материи взаимодействует с топологическим
массивным калибровочным полем). Показано, что $q$-деформированная
перестановочная алгебра возникает как в поперечной, так и в
вейлевской калибровках. При этом существует две возможности:
а) в модели возможна только фермион-бозонная трансмутация в неодносвязной области;
б) допустимы поля, подчиняющиеся энионной
статистике, если область определения полей ограничена стягиваемым
подмножеством проколотой плоскости. Библ. – 16 назв.