RUS  ENG
Полная версия
ЖУРНАЛЫ // Записки научных семинаров ПОМИ // Архив

Зап. научн. сем. ПОМИ, 2012, том 404, страницы 233–247 (Mi znsl5271)

Эта публикация цитируется в 2 статьях

Экстремальные значения автоморфных $L$-функций

О. М. Фоменко

С.-Петербургское отделение Математического института им. В. А. Стеклова РАН, Санкт-Петербург, Россия

Аннотация: Пусть $f(z)$ – примитивная параболическая форма чётного веса $\kappa\ge12$ относительно полной модулярной группы. Для автоморфных $L$-функций $L(s,f)$, $L(s,\mathrm{sym}^2f)$, $L(s,f\times f)$, а также для дзета-функции Дедекинда $\zeta_{K_3}(s)$ кубического поля $K_3$, доказываются теоремы об экстремальных значениях этих функций, аналогичные теореме 8.12 классической книги Титчмарша о дзета-функции Римана.
Далее, в случае $L(s,f\times f)$ и $\zeta_{K_3}(s)$, где $K_3$ – кубическое поле, полученное присоединением к $\mathbb Q$ корня полинома третьей степени дискриминанта $D<0$ с группой Галуа $S_3$, эти результаты уточняются. Например, для $L$-функции Ранкина–Сельберга $L(s,f\times f)$ имеем: при $(\log T)^c\le Y\le T$, $T>C$, существуют положительные константы $D_1$, $D_2$ такие, что
$$ \max_{1\le t\le T+Y}\bigg|L\bigg(\frac12+it,f\times f\bigg)\bigg|\ge\exp\bigg\{D_1\bigg(\frac{\log Y}{\log\log Y}\bigg)^{1/2}\bigg\}, $$
и
$$ \max_{1\le t\le T+Y}\big|L(\sigma_0+it,f\times f)\big|\ge\exp\Bigg\{D_2\frac{(\log Y)^{1-\sigma_0}}{\log\log Y}\Bigg\} $$
для каждой константы $\sigma_0$, $\frac12<\sigma_0<1$. Библ. – 15 назв.

Ключевые слова: автоморфные $L$-функции, дзета-функция Дедекинда, экстремальные значения.

УДК: 511.466+517.863

Поступило: 30.08.2012


 Англоязычная версия: Journal of Mathematical Sciences (New York), 2013, 193:1, 136–144

Реферативные базы данных:


© МИАН, 2024