RUS  ENG
Полная версия
ЖУРНАЛЫ // Записки научных семинаров ПОМИ // Архив

Зап. научн. сем. ПОМИ, 2012, том 408, страницы 187–196 (Mi znsl5500)

Эта публикация цитируется в 11 статьях

Случайные определители, смешанные объемы эллипсоидов и нули гауссовских случайных полей

Д. Н. Запорожецa, З. Каблучкоb

a Санкт-Петербургское отделение Математического института им. В. А. Стеклова РАН, Санкт-Петербург, Россия
b Institute of Stochastics, Ulm University, Ulm, Germany

Аннотация: Рассмотрим матрицу $M$ размера $d\times d$, чьи строки являются центрированными невырожденными гауссовскими векторами $\xi_1,\ldots,\xi_d$ с ковариационными матрицами $\Sigma_1,\dots,\Sigma_d$ соответственно. Ообзначим $\mathcal E_i$ эллипсоид рассеивания $\xi_i$: $\mathcal E_i=\{\mathbf x\in\mathbb R^d\colon\mathbf x^\top\Sigma_i^{-1}\mathbf x\leqslant1\}$. Мы покажем, что
$$ \mathbf E\,|\det M|=\frac{d!}{(2\pi)^{d/2}}V_d(\mathcal E_1,\dots,\mathcal E_d), $$
где $V_d(\cdot,\dots,\cdot)$ обозначает смешанный объем. Мы также обобщим этот результат на случай прямоугольных матриц. В качестве прямого следствия мы получим аналитическое выражение для смешанного объема произвольных эллипсоидов в $\mathbb R^d$.
В качестве другого приложения мы рассмотрим гладкое центрированное невырожденное гауссовское случайное поле $X=(X_1,\dots,X_k)^\top\colon\mathbb R^d\to\mathbb R^k$. Используя формулу Каца–Райса, мы получим геометрическую интерпретацию интенсивности нулей $X$ в терминах смешанного объема эллипсоидов рассеивания градиентов $X_i/\sqrt{\mathbf{Var}X_i}$. Данная связь множества нулей уравнений со смешанными объемами напоминает хорошо известную теорему Бернштейна о числе решений типичной системы алгебраических уравнений. Библ. – 10 назв.

Ключевые слова: гауссовский случайный определитель, матрица Уишарта, гауссовский случайный параллелотоп, смешанный объем эллипсоидов, эллипсоид рассеивания, нули гауссовских случайных полей, многогранники Ньютона, формула Каца–Райса.

УДК: 519.2+514

Поступило: 10.10.2012


 Англоязычная версия: Journal of Mathematical Sciences (New York), 2014, 199:2, 168–173

Реферативные базы данных:


© МИАН, 2024