RUS  ENG
Полная версия
ЖУРНАЛЫ // Записки научных семинаров ПОМИ // Архив

Зап. научн. сем. ПОМИ, 2012, том 409, страницы 17–39 (Mi znsl5509)

Эта публикация цитируется в 13 статьях

Динамическая система с граничным управлением, связанная с симметрическим полуограниченным оператором

М. И. Белишев, М. Н. Демченко

С.-Петербургское отделение Математического института им. В. А. Стеклова РАН, Санкт-Петербург, Россия

Аннотация: Пусть $L_0$ – замкнутый плотно определенный симметрический полуограниченный оператор с ненулевыми индексами дефекта в сепарабельном гильбертовом пространстве $\mathcal H$. Он определяет систему Грина $\{\mathcal H,\mathcal B;L_0,\Gamma_1,\Gamma_2\}$, где $\mathcal B$ – гильбертово пространство, а $\Gamma_i\colon\mathcal H\to\mathcal B$ суть операторы, связанные формулой Грина
$$ (L_0^*u, v)_\mathcal H-(u,L_0^*v)_\mathcal H=(\Gamma_1u,\Gamma_2v)_\mathcal B-(\Gamma_2u,\Gamma_1v)_\mathcal B. $$
Граничное пространство $\mathcal B$ и граничные операторы $\Gamma_i$ выбираются каноническим образом в рамках теории Вишика. ]
С системой Грина можно связать динамическую систему с граничным управлением (ДСГУ)
\begin{align*} &u_{tt}+L_0^*u=0,&&u(t)\in\mathcal H,\,\,t>0,\\ &u|_{t=0}=u_t|_{t=0}=0,&&\\ &\Gamma_1u=f,&&f(t)\in\mathcal B,\,\,\,t\geqslant0. \end{align*}
Мы показываем, что эта система управляема, если и только если оператор $L_0$ вполне несамосопряжен.
Дается определение волнового спектра оператора $L_0$. Это топологическое пространство, которое строится по $L_0$ из достижимых множеств ДСГУ. Библ. – 15 назв.

Ключевые слова: динамическая система с граничным управлением, система Грина, волновой спектр, восстановление многообразий.

УДК: 517.951

Поступило: 27.11.2012


 Англоязычная версия: Journal of Mathematical Sciences (New York), 2013, 194:1, 8–20

Реферативные базы данных:


© МИАН, 2024