Аннотация:
Пусть $0<\varepsilon\le1$, $F\in C(\mathbb T)$, $E=\{F\ne0\}$, $\delta>0$. Тогда существует функция $G$ с равномерно сходящимся рядом Фурье, такая что $|G|+|F-G|\le(1+\delta)|F|$, $m\{F\ne G\}\le\varepsilon mE$ и $\sup\{|\sum_{k\le j\le l}\hat G(j)\zeta^j|\colon\zeta\in\mathbb T,\ k\le l\}\le\mathrm{const}\|F\|_\infty(1+\log\varepsilon^{-1})$. Библ. – 3 назв.