Аннотация:
В работе подробно изучается структура группы $\mathrm{GL}(6,K)$ относительно некоторого семейства классов сопряженности, элементы которых автор называет квазикорневыми. А именно, доказывается, что любой элемент группы $\mathrm{GL}(6,K)$ есть произведение трех квазикорневых элементов, и полностью описываются все элементы, являющиеся произведением двух квазикорневых элементов. Этот результат используется в вопросах нахождения ширины исключительной группы типа $E_6$, а также интересен и сам по себе. Библ. – 41 назв.
Ключевые слова:полная линейная группа, ширина группы, корневые элементы.