RUS  ENG
Полная версия
ЖУРНАЛЫ // Записки научных семинаров ПОМИ // Архив

Зап. научн. сем. ПОМИ, 2014, том 426, страницы 119–139 (Mi znsl6034)

Эта публикация цитируется в 4 статьях

Интегральные уравнения и диаграмма рассеяния в задаче дифракции на двух сдвинутых вдоль линии контакта клиньях с многоугольной границей

М. А. Лялинов

С.-Петербургский государственный университет, Университетский пр. 28, Петродворец, 198504 Санкт-Петербург, Россия

Аннотация: В данной работе мы изучаем акустическую задачу дифракции на двух клиньях с различными скоростями распространения. Предполагается, что клинья имеют параллельные ребра и общую часть границы, и второй клин сдвинут относительно первого в ортогональном к ребрам направлении вдоль общей части границы. Волновое поле подчиняется уравнению Гельмгольца. На многоугольной границе, отделяющей эти сдвинутые клинья от внешней области, выполнено граничное условие Дирихле. Волновое поле возбуждается источником в виде бесконечной нити параллельной ребрам. В этих условиях, эффективно задача является двумерной. Мы применяем преобразование Конторовича–Лебедева для разделения радиальной и угловой переменных и для редукции исследуемой задачи к интегральным уравнениям второго рода для так называемых спектральных функций. Ядро интегральных уравнений, заданное в виде произведения функций Макдональда, аналитически преобразуется к упрощенной форме. С использованием альтернативного интегрального представления решения типа интеграла Зоммерфельда в терминах спектральных функций выписаны выражения для диаграммы рассеяния. Библ. – 24 назв.

Ключевые слова: дифракция на двойном клине, интегральные уравнения, асимптотика дальнего поля.

УДК: 517.95

Поступило: 01.10.2014


 Англоязычная версия: Journal of Mathematical Sciences (New York), 2016, 214:3, 322–336

Реферативные базы данных:


© МИАН, 2024