Аннотация:
Пусть $T$ – тригонометрический полином порядка не выше $n$, точка $x_0$ такая, что $T(x_0)=\max_{x\in\mathbb R}|T(x)|$. В силу неравенство Бернштейна,
\begin{equation*}
T(x_0+t)\geqslant\max_{x\in\mathbb R}|T(x)|\cos{nt}
\end{equation*}
при $|t|\leqslant\frac\pi n$. В статье это неравенство развивается. Установлены оценки сверху для сумм $\sum_{k=n}^\infty k^\alpha\rho_k(f)$, где $\rho_k(f)=\sqrt{a_k^2(f)+b_k^2(f)}$ посредством величин, характеризующих структурные свойства функций, с конкретными постоянными. Библ. – 9 назв.