Аннотация:
Предложен вариант такой теории Галуа для систем обыкновенных дифференциальных уравнений, в которой не фиксируется список допустимых трансцендентных операций.
Доказана теорема, согласно которой поле интегралов системы дифференциальных уравнений эквивалентно полю рациональных функций на гиперповерхности, допускающей непрерывную группу бирациональных автоморфизмов, размерность которой совпадает с числом алгебраически независимых трансцендент, вводимых интегрированием системы.
Предложенное построение является развитием алгебраических идей, изложенных Полем Пенлеве в его Стокгольмских лекциях. Библ. – 34 назв.
Ключевые слова:теория Галуа, свойство Пенлеве, интегрирование в конечном виде, абелевы интегралы, уравнение Риккати.