Аннотация:
В работе дается элементарное доказательство точного неравенства типа Бернштейна
$$
\|f^{(s)}\|_2\le\frac{n^s}{2^s}\left(\frac{\mathcal K_{2r+1-2s}}{\mathcal K_{2r+1}}\right)^{1/2}\|\delta^s_\frac\pi n f\|_2.
$$
Здесь $n,r,s\in\mathbb N$, $f$ есть $2\pi$-периодический сплайн порядка $r$ минимального дефекта с узлами $\frac{j\pi}n$ ($j\in\mathbb Z$), $\delta^s_h$ – разностный оператор порядка $s$ с шагом $h$, $\mathcal K_m$ – константы Фавара. Устанавливается аналогичное неравенство для пространства $L_2(\mathbb R)$. Библ. – 5 назв.