Аннотация:
Пусть $\sigma>0$, $m,r\in\mathbb N$, $m\geqslant r$, $\mathbf S_{\sigma,m}$ – пространство сплайнов порядка $m$ минимального дефекта с узлами $\frac{j\pi}\sigma$ ($j\in\mathbb Z$), $A_{\sigma,m}(f)_p$ – наилучшее приближение функций $f$ множеством $\mathbf S_{\sigma,m}$ в пространстве $L_p(\mathbb R)$. Известно, что при $p=1,+\infty$ \begin{equation}
\sup_{f\in W^{(r)}_p(\mathbb R)}\frac{A_{\sigma,m}(f)_p}{\|f^{(r)}\|_p}=\frac{\mathcal K_r}{\sigma^r}.\end{equation}
В настоящей работе строятся линейные операторы $\mathcal X_{\sigma,r,m}$ со значениями в $\mathbf S_{\sigma,m}$, такие что для всех $p\in[1,+\infty]$ и $f\in W_p^{(r)}(\mathbb R)$ $$
\|f-\mathcal X_{\sigma,r,m}(f)\|_p\leqslant\frac{\mathcal K_r}{\sigma^r}\|f^{(r)}\|_p.
$$
Тем самым устанавливается возможность реализации верхних граней в (1) линейными методами приближения, ранее остававшаяся неизвестной. Библ. – 21 назв.