Аннотация:
В работе предложено обобщение аддитивных неравенств Вейля на случай двух квадратных матриц различных порядков. В качестве следствия из обобщенных неравенств Вейля выводится теорема, описывающая расположение собственных значений эрмитовой матрицы в терминах собственных значений произвольной матрицы меньшего порядка и обобщающая теорему Кахана о кластеризованных
собственных значениях. Показано, что теорема о расширенных перемежающихся интервалах, установленная в [3], также является следствием предложенных
обобщенных аддитивных неравенств Вейля. Библ. – 7 назв.