Аннотация:
В данной работе мы решаем проблему А. В. Яковлева для $p$-расширения нечетного порядка с циклической нормальной подгруппой и абелевой фактогруппой: для нерасщепляемых расширений такого вида существует реализация факторгруппы в виде группы Галуа числовых полей, такая, что соответствующая задача погружения является ультраразрешимой (т.е. данная задача погружения разрешима, а все ее решения являются полями). Также дается в удовлетворительных терминах решение задач погружения для $p$-расширений нечетного порядка с ядром порядка $p$ и факторгруппой, представимой в виде прямого произведения своих собственных подгрупп – это обобщает на случай $p>2$ аналогичный результат А. Ледета для $p=2$. Библ. – 9 назв.
Ключевые слова:ультраразрешимость, задача погружения.