Аннотация:
Рассматриваются векторные расслоения ранга 2 на арифметической поверхности, представленной проективной прямой над $\mathbb Z$. Предположим, что такое расслоение $E$ тривиально в слое над $\mathbb Q$, а для каждой замкнутой точки $\operatorname{Spec}\mathbb Z$ ограничение $E$ на проективную прямую над соответствующим полем вычетов изоморфно $\mathcal O^2$ или $\mathcal O(-1)\oplus\mathcal O(1)$. В этих предположениях доказано, что существует точная последовательность вида $0\to\mathcal O(-2)\to E\to\mathcal O(2)\to0$. Библ. – 4 назв.