Аннотация:
Мы изучаем свойства множества $\Sigma$, являющегося решением задачи о минимизации длины для произвольных компакта $M\subset\mathbb R^2$ и числа $r>0$, ограничивающего максимальное расстояние от искомого множества до $M$. Иначе говоря, искомое множество $\Sigma$ имеет минимальную длину в классе замкнутых связных множеств $\Sigma'$, таких что
$$
F_M(\Sigma'):=\max_{y\in M}\operatorname{dist}(y,\Sigma')\leq r.
$$
В настоящей заметке анонсируется теорема о регулярности минимайзеров и некоторые ее следствия; в частности она гарантирует, что любой минимайзер максимального расстояния является объединением конечного числа инъективных кривых. При этом угол между любыми двумя касательными лучами в произвольной точке $\Sigma$ больше или равен $2\pi/3$.
Все утверждения верны даже для более широкого, чем минимайзеры, класса локальных минимайзеров. Библ. – 4 назв.