Аннотация:
В данной работе изложены результаты вычислений целочисленных гомологий свободных нильпотентных алгебр Ли $H_i(L(x_1,\dots,x_r)/\gamma_{N+1})$ в системе вычислительной алгебры GAP. Наше внимание было сосредоточено на возникновении неожиданного кручения в этих гомологиях, аналогичного тому, которое возникает для $4$-порождённых свободных нильпотентных групп ступени $2$. Главный результат заключается в том, что даже для двух образующих в четвёртых целочисленных гомологиях возникает кручение, когда ступень нильпотентности равна $5$. Причём возникает $7$-кручение, и не возникает никакого другого кручения. А именно, имеет место изоморфизм $H_4(L(x_1,x_2)/\gamma_{6})\cong \mathbb Z^{85}\oplus \mathbb Z/7$. Библ. – 6 назв.