RUS  ENG
Полная версия
ЖУРНАЛЫ // Записки научных семинаров ПОМИ // Архив

Зап. научн. сем. ПОМИ, 2019, том 479, страницы 5–22 (Mi znsl6758)

Эта публикация цитируется в 4 статьях

Commutators of congruence subgroups in the arithmetic case

[Коммутаторы конгруэнц-подгрупп в арифметическом случае]

N. Vavilov

St. Petersburg State University

Аннотация: В нашей совместной статье с Алексеем Степановым доказано, что для двух любых комаксимальных идеалов $A$ и $B$ коммутативного кольца $R$, $A+B=R$, и любого $n\ge 3$ выполняется равенство
$$[E(n,R,A),E(n,R,B)]=E(n,R,AB). $$
Алек Мейсон и Уилсон Стотерс построили контр-примеры которые показывают, без предположения комаксимальности идеалов $A$ и $B$ это равенство может нарушаться даже для столь хороших колец как $\mathbb Z[i]$. В настоящей работе мы устанавливаем довольно удивительный результат, чтол это равенство – и, на самом деле, более сильное равенство $[\operatorname{GL}(n,R,A),\mathrm{GL}(n,R,B)]=E(n,R,AB)$ – выполняются для любых пар идеалов в случае, когда $R$ дедекиндово кольцо арифметического типа с бесконечной мультипликативной группой. Доказательство является смесью элементарных вычислений в духе предшествующих работ Вильберда ван дер Каллена, Рузби Хазрата, Дзухонга Чжанга, Алексея Степанова и автора, и, с другой стороны, явного вычисления многопараметрических относительных $\operatorname{SK}_1$ из моей статьи 1982 года, которая, в свою очередь, опиралась на глубокие арифметичсекие результаты Жана-Пьера Серра и Леонида Васерштейна (после их исправления Армином Лейтбехером и Бернардом Лилем). Библ. – 50 назв.

Ключевые слова: полная линейная группа, конгруэнц-подгруппы, элементарные группы, стандартные коммутационные формулы, дедекиндовы кольца арифметического типа.

УДК: 512.5

Поступило: 07.10.2019

Язык публикации: английский



© МИАН, 2024