Аннотация:
Предлагается ядерно-модульный алгоритм ($\mathcal{KM}$-алгоритм) разложения алгебраических чисел $\alpha=(\alpha_1,\ldots,\alpha_d)$ из $\mathbb{R}^{d}$ в многомерные цепные дроби — последовательности рациональных чисел $$ \frac{P_{a}}{Q_{a}}=\Bigl( \frac{P^{a}_1}{Q^{a}},\ldots,\frac{P^{a}_d}{Q^{a}}\Bigr) $$ из $\mathbb{Q}^d$ с числителями $P^{a}_1,\ldots,P^{a}_d \in \mathbb{Z}$ и общим знаменателем $Q^{a}=1,2,3,\ldots$$ \mathcal{KM}$-алгоритм относится к классу настраиваемых алгоритмов. Он основывается на построении локализованных единиц Пизо $\zeta>1$, для которых модули всех сопряженных $\zeta^{(i)}\ne \zeta$ содержатся в $\theta$-окрестности числа $\zeta^{-1/d}$, где параметр $\theta>0$ может принимать произвольное фиксированное значение. Доказано, что если $\alpha$ — вещественная алгебраическая точка степени $\mathrm{deg}(\alpha)=d+1$, то $ \mathcal{KM}$-алгоритм позволяет получить следующую аппроксимацию $$ \Bigl|\alpha - \frac{P_{a}}{Q_{a}}\Bigr| \leq \frac{c}{Q^{1+\frac{1}{d}-\theta}_{a}} $$ для всех $a\geq a_{\alpha,\theta}$, где константы $a_{\alpha,\theta}>0$ и $c=c_{\alpha,\theta}>0$ не зависят от $a=1,2,3,\ldots$ и подходящие дроби $\frac{P_{a}}{Q_{a}}$ вычисляются с помощью некоторого рекуррентного соотношения с постоянными коэффициентами, определяемые выбором локализованной единицы $\zeta$. Библ. — 19 назв.