RUS  ENG
Полная версия
ЖУРНАЛЫ // Записки научных семинаров ПОМИ // Архив

Зап. научн. сем. ПОМИ, 2019, том 479, страницы 52–84 (Mi znsl6760)

Наилучшие приближения алгебраических чисел многомерными цепными дробями

В. Г. Журавлев

Владимирский государственный университет улица Строителей 11, 600024, Владимир, Россия

Аннотация: Предлагается ядерно-модульный алгоритм ($\mathcal{KM}$-алгоритм) разложения алгебраических чисел $\alpha=(\alpha_1,\ldots,\alpha_d)$ из $\mathbb{R}^{d}$ в многомерные цепные дроби — последовательности рациональных чисел
$$ \frac{P_{a}}{Q_{a}}=\Bigl( \frac{P^{a}_1}{Q^{a}},\ldots,\frac{P^{a}_d}{Q^{a}}\Bigr) $$
из $\mathbb{Q}^d$ с числителями $P^{a}_1,\ldots,P^{a}_d \in \mathbb{Z}$ и общим знаменателем $Q^{a}=1,2,3,\ldots$ $ \mathcal{KM}$-алгоритм относится к классу настраиваемых алгоритмов. Он основывается на построении локализованных единиц Пизо $\zeta>1$, для которых модули всех сопряженных $\zeta^{(i)}\ne \zeta$ содержатся в $\theta$-окрестности числа $\zeta^{-1/d}$, где параметр $\theta>0$ может принимать произвольное фиксированное значение. Доказано, что если $\alpha$ — вещественная алгебраическая точка степени $\mathrm{deg}(\alpha)=d+1$, то $ \mathcal{KM}$-алгоритм позволяет получить следующую аппроксимацию
$$ \Bigl|\alpha - \frac{P_{a}}{Q_{a}}\Bigr| \leq \frac{c}{Q^{1+\frac{1}{d}-\theta}_{a}} $$
для всех $a\geq a_{\alpha,\theta}$, где константы $a_{\alpha,\theta}>0$ и $c=c_{\alpha,\theta}>0$ не зависят от $a=1,2,3,\ldots$ и подходящие дроби $\frac{P_{a}}{Q_{a}}$ вычисляются с помощью некоторого рекуррентного соотношения с постоянными коэффициентами, определяемые выбором локализованной единицы $\zeta$. Библ. — 19 назв.

Ключевые слова: многомерные цепные дроби, наилучшие приближения, локализованные единицы Пизо.

УДК: 511.3

Поступило: 18.04.2019



© МИАН, 2024