RUS  ENG
Полная версия
ЖУРНАЛЫ // Записки научных семинаров ПОМИ // Архив

Зап. научн. сем. ПОМИ, 2019, том 480, страницы 148–161 (Mi znsl6768)

Эта публикация цитируется в 1 статье

Почти инвариантные подпространства и рациональная интерполяция

В. В. Капустин

Санкт-Петербургское отделение Математического института им. В. А. Стеклова РАН, набережная реки Фонтанки 27, 191023, Санкт-Петербург, Россия

Аннотация: Для заданной внутренней функции $\theta$ в верхней полуплоскости рассмотрим подпространство $K_\theta=H^2\ominus\theta H^2$ пространства Харди $H^2$. Для конечного набора $\Lambda$ точек комплексной плоскости подпространство функций из $K_\theta$, обращающихся в нуль на $\Lambda$, может быть представлено в виде $g\cdot K_\omega$, где $\omega$ – внутренняя функция, а $g$ – изометрический множитель на $K_\omega$. Получено описание функций $\omega$ и $g$ в терминах $\theta$ и $\Lambda$. Библ. – 6 назв.

Ключевые слова: класс Харди, модельные пространства, алгоритм Шура.

УДК: 517.58

Поступило: 26.08.2019



© МИАН, 2024