RUS  ENG
Полная версия
ЖУРНАЛЫ // Записки научных семинаров ПОМИ // Архив

Зап. научн. сем. ПОМИ, 2019, том 481, страницы 63–73 (Mi znsl6778)

Парус Клейна и диофантовы приближения вектора

А. А. Лодкин

С.-Петербургский государственный университет, С.-Петербург, Россия

Аннотация: В основанных на идеях Пуанкаре и Клейна работах В. И. Арнольда и его последователей многомерной цепной дробью назывался парус Клейна, который связывался с оператором в $\mathbb R^n$. В его терминах формулировались многомерные обобщения теоремы Лагранжа о цепных дробях. Другие попытки обобщения цепных дробей опирались на модификации алгоритма Евклида построения последовательности рациональных векторов, аппроксимирующих заданный $n$-мерный вектор.
Мы предлагаем модификацию паруса Клейна, построенную непосредственно по иррациональному вектору (минуя оператор). Предложена числовая характеристика паруса Клейна – асимптотическая анизотропия, связанная с однопараметрической группой преобразований решетки и соответствующей деформацией ячейки Вороного. С этой характеристикой связана надежда дать геометрическую характеризацию иррациональных векторов, хуже всего аппроксимируемых рациональными. В трехмерном пространстве предложен вектор (связанный с наименьшим числом Пизо–Виджаярагхавана) – кандидат на эту роль. Его можно считать аналогом золотого сечения, экстремально плохо приближаемого числа в классической теории диофантовых приближений. Обсуждаются и другие подходы, которые могут оказаться полезными для поиска экстремально плохо приближаемых векторов. Библ. – 18 назв.

Ключевые слова: парус Клейна, многогранник Клейна, диофантовы приближения, золотое сечение, пластическое число, ячейка Вороного, асимптотическая асферичность.

УДК: 511.41, 511.72, 514

Поступило: 19.09.2019



© МИАН, 2024