RUS  ENG
Полная версия
ЖУРНАЛЫ // Записки научных семинаров ПОМИ // Архив

Зап. научн. сем. ПОМИ, 2021, том 501, страницы 236–258 (Mi znsl7087)

Асимптотики $L_2$-малых уклонений для конечномерных возмущений гауссовских функций

Ю. П. Петрова

Лаборатория Чебышева, С.-Петербургский государственный университет, 14 линия В.О., 29Б, 199178, Санкт-Петербург, Россия

Аннотация: Мы изучаем малые уклонения в $L_2$-норме для семейства конечномерных возмущений гауссовских функций. Мы определяем три типа возмущений: некритические, частично критические и критические; и выражаем асимптотику малых уклонений возмущенных процессов через асимптотику малых уклонений исходного процесса. Естественные примеры таких возмущений возникают в статистике при изучении эмпирических процессов с оцененными параметрами (так называемые процессы Дурбина). Мы показываем, что процессы Дурбина являются критическими возмущениями броуновского моста. При дополнительных предположениях обший результат удается упростить. В качестве примера мы находим точную асимптотику $L_2$-малых уклонений для критических возмущений гриновских процессов (процессов, чья функция ковариации есть функция Грина для обыкновенного дифференциального оператора). Библ. – 37 назв.

Ключевые слова: малые уклонения, гауссовские процессы, спектральные асимптотики, $L_2$-норма.

УДК: 519.2

Поступило: 18.09.2021



© МИАН, 2024