RUS  ENG
Полная версия
ЖУРНАЛЫ // Записки научных семинаров ПОМИ // Архив

Зап. научн. сем. ПОМИ, 2023, том 523, страницы 19–38 (Mi znsl7343)

Обобщенные разложения Гаусса простых алгебраических групп

Н. Л. Гордеев

Факультет математики Российского Государственного Педагогического Университета имени А. И. Герцена, Набережная реки Мойки 48, Санкт-Петербург 191186, Россия

Аннотация: Пусть $\mathcal G$ – простая алгебраическая группа, определенная и расщепимая над полем $K$, соответсвующая неприводимой системе корней $R$, и пусть $G = \mathcal G(K)$ – группа $K$-точек. Будем говорить, что группа $G$ имеет $M$-разложение, где $M \subset R$, если любой элемент подмножества $\prod_{\beta \in R\setminus M} X_\beta\cdot T\cdot \prod_{\alpha\in M}X_\alpha$, где $X_\beta, X_\alpha$ – корневые подгрупы, а $T$– группа $K$-точек максимального расщепимого тора, однозначно представляется в виде произведения элементов корневых подгрупп и группы $T$. При этом предполагается, что порядок умножения элементов групп $\{X_\beta\}_{\beta \in R\setminus M}$ и $ \{X_\alpha\}_{\alpha \in M}$ зафиксирован. Если такое однозначное разложение имеет место при любом зафиксированном порядке умножения элементов подгрупп $\{X_\beta\}_{\beta \in R\setminus M}, \,\{X_\alpha\}_{\alpha \in M}$, то будем говорить, что группа $G$ имеет универсальное $M$-разложение. Важным примером универсального $M$-разложения является классическое разложение Гаусса, в котором $M = R^+$ – множество положительных корней.
В данной работе строятся примеры $M$-разложений, возникающие при рассмотрении параболических подгрупп в $\mathcal G$. Кроме того, для группа типа $A_2, B_2$ приводятся тождества, препятствующие универсальным $M$-разложениям для некоторых подмножеств $M\subset R$. Библ. – 6 назв.

Ключевые слова: простые алгебраические группы, Большая Клетка Гаусса, разложение Гаусса, замкнутые подмножества корней.

УДК: 512.74

Поступило: 26.09.2023



© МИАН, 2024