Аннотация:
Изучается обратная задача о нахождении коэффициента $\rho(x)=\rho_0+r(x)$ перед $u_t$ в уравнении теплопроводности. При этом неизвестная функция $r(x)\geqslant0$ ищется в классе ограниченных функций, а $\rho_0$ — заданная положительная постоянная. Помимо начальных и граничных условий (данных прямой задачи) задается условие нелокального наблюдения в виде $\int\limits_0^T u(x,t)d\mu(t)=\chi(x)$ c известной мерой $d\mu(t)$ и функцией $\chi(x)$. Отдельно рассматривается случай $d\mu(t)=\omega(t)dt$ — интегрального наблюдения. Получены достаточные условия существования и единственности решения обратной задачи, имеющие вид легко проверяемых неравенств. Приведены примеры конкретных обратных задач, для которых выполнены условия доказанных в работе теорем. Библ. 29.
Ключевые слова:коэффициентные обратные задачи, обратная задача для уравнения теплопроводности, условие нелокального наблюдения (или переопределения), достаточные условия существования и единственности решения.
УДК:519.633.9
Поступила в редакцию: 04.04.2014 Исправленный вариант: 14.07.2014