Аннотация:
Рассматривается задача Синьорини для уравнения Пуассона в плоской области $\Omega(\varepsilon)=\Omega\setminus\bar\omega_\varepsilon$ с малой полостью $\omega_\varepsilon$, на границе $\partial\omega_\varepsilon$ которой поставлены условия Неймана. Предполагается, что односторонние ограничения задаются на части $\Gamma$ границы $\partial\Omega$, области $\Omega$, а на остальной части $\Sigma=\partial\Omega\setminus\Gamma$ ставятся условия Дирихле. С помощью метода сращиваемых асимптотических разложений, когда $\varepsilon\to+0$, построено приближенное решение задачи при некоторых предположениях относительно коинцидентного множества предельной задачи Синьорини. Получена асимптотика энергетического функционала. Все асимптотические формулы обоснованы; погрешность оценена в энергетической норме. Библ. 19.