Аннотация:
Рассматривается NP-трудная в сильном смысле задача разбиения конечной последовательности векторов евклидова пространства на два кластера по критерию минимума суммы квадратов расстояний от элементов кластеров до их центров. Центр первого кластера является оптимизируемой величиной и определяется как среднее значение по всем векторам, образующим этот кластер. Центр второго кластера фиксирован в начале координат. При этом разбиение подчинено условию: разность между номерами последующего и предыдущего векторов, входящих в первый кластер, ограничена сверху и снизу заданными константами. Предложен 2-приближенный полиномиальный алгоритм решения этой задачи. Библ. 14.