RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал вычислительной математики и математической физики // Архив

Ж. вычисл. матем. и матем. физ., 2016, том 56, номер 2, страницы 259–274 (Mi zvmmf10343)

Эта публикация цитируется в 23 статьях

Устойчивость структуры разрывов, описываемых обобщенным уравнением Кортевега–де Вриза–Бюргерса

А. П. Чугайноваa, В. А. Шаргатовb

a 119991 Москва, ул. Губкина, 8, МИАН
b 115409 Москва, Каширское ш., 31, НИЯУ МИФИ

Аннотация: Изучается устойчивость структуры разрывов, представляющих решения модельного обобщенного уравнения Кортевега–де Вриза–Бюргерса с немонотонным потенциалом вида $\varphi(u)=u^4-u^2$. Среди этих решений есть решения, соответствующие структурам особых разрывов. Особым называется разрыв, структура которого представляет гетероклиническую фазовую кривую, соединяющую две особые точки типа седла (одна из этих точек — состояние перед разрывом, другая — за разрывом). Ранее исследована спектральная (линейная) устойчивость структуры особых разрывов. Показано, что устойчив только один особый разрыв с монотонной структурой. Особые разрывы с немонотонной структурой неустойчивы. В данной работе изучается спектральная устойчивость неособых разрывов. Структура неособого разрыва представляет собой фазовую кривую, соединяющую две особые точки — седло (состояние перед разрывом) и фокус или узел (состояние за разрывом). Изучена картина множества неособых разрывов в зависимости от параметров дисперсии и диссипации. Выявлено множество устойчивых неособых разрывов. Библ. 13. Фиг. 21.

Ключевые слова: обобщенное уравнение Кортевега–де Вриза–Бюргерса, спектральная (линейная) устойчивость стационарных решений, особые разрывы.

УДК: 519.634

Поступила в редакцию: 18.05.2015

DOI: 10.7868/S0044466916020058


 Англоязычная версия: Computational Mathematics and Mathematical Physics, 2016, 56:2, 263–277

Реферативные базы данных:


© МИАН, 2024