Об эквивалентности электромагнитной задачи дифракции на неоднородном ограниченном диэлектрическом теле объемному сингулярному интегродифференциальному уравнению
Аннотация:
Изучаются свойства гладкости решений объемного сингулярного интегродифференциального уравнения электрического поля, к которому сводится решение задачи дифракции электромагнитной волны на локально неоднородном диэлектрическом ограниченном теле. Основным методом исследования является метод псевдодифференциальных операторов, действующих в пространствах Соболева. Применяется также теория эллиптических краевых задач и задач сопряжения. Доказывается, что при гдадких данных задачи решение из пространства квадратично-суммируемых функций будет непрерывным вплоть до границ тела и гладким внутри и вне тела. Полученные результаты о гладкости решений объемного сингулярного интегродифференциального уравнения электрического поля позволяют решить вопросы об эквивалентности краевой задачи и уравнения. Библ. 20.