RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал вычислительной математики и математической физики // Архив

Ж. вычисл. матем. и матем. физ., 2017, том 57, номер 1, страницы 55–68 (Mi zvmmf10507)

Эта публикация цитируется в 6 статьях

Устойчивый итерационный принцип Лагранжа в выпуклом программировании как инструмент для решения неустойчивых задач

Ф. А. Кутерин, М. И. Сумин

603950 Нижний Новгород, пр-т Гагарина, 23, Нижегородский гос. ун-т

Аннотация: Рассматривается задача выпуклого программирования в гильбертовом пространстве с операторным ограничением–равенством и конечным числом функциональных ограничений–неравенств, содержащая параметры в ограничениях. Обсуждается теснейшая связь неустойчивости этой задачи и, как следствие, неустойчивости классического принципа Лагранжа для нее со свойствами его регулярности и свойствами субдифференцируемости функции значений оптимизационной задачи. Для указанной задачи выпуклого программирования доказывается устойчивый к ошибкам исходных данных принцип Лагранжа в итерационной недифференциальной форме с правилом останова итерационного процесса. Он обслуживает как нормальный, регулярный и анормальный случаи задачи, так и тот случай, когда классический принцип Лагранжа для нее вовсе не верен. Обсуждается возможность применимости устойчивого секвенциального принципа Лагранжа при непосредственном решении неустойчивых оптимизационных задач. В качестве иллюстрации возможностей применения устойчивого принципа Лагранжа в итерационной форме приводятся результаты численных экспериментов по решению на его основе классической некорректной задачи нахождения нормального решения интегрального уравнения Фредгольма I рода. Библ. 18. Фиг. 2. Табл. 2.

Ключевые слова: выпуклое программирование, неустойчивость, секвенциальная оптимизация, итеративная двойственная регуляризация, регуляризованный принцип Лагранжа в итерационной форме, неустойчивые задачи, интегральное уравнение Фредгольма I рода.

УДК: 519.858

Поступила в редакцию: 03.02.2016

DOI: 10.7868/S0044466917010100


 Англоязычная версия: Computational Mathematics and Mathematical Physics, 2017, 57:1, 71–82

Реферативные базы данных:


© МИАН, 2024