RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал вычислительной математики и математической физики // Архив

Ж. вычисл. матем. и матем. физ., 2003, том 43, номер 2, страницы 212–225 (Mi zvmmf1060)

Эта публикация цитируется в 1 статье

Моделирование и численно-аналитические расчеты контрастных структур переменного типа

А. А. Плотников

119992 Москва, Ленинские горы, МГУ, физ. фак-т

Аннотация: Изучаются решения $u(x,t,\varepsilon)$ сингулярно возмущенного параболического уравнения в $\varepsilon^2u_{xx}-\varepsilon^{1+\theta}u_t =F(u,x,t)$, где правая часть зависит от переменной времени $t$ периодически и числа $\varepsilon>0$, $\theta\ge0$ являются параметрами. Численно-аналитическими методами исследуются конкретные задачи. В некоторых случаях происходят изменения решения от чисто погранслойного типа, близкого к верхнему корню $\varphi_3(x,t)$ вырожденного уравнения $F(\bar u,x,t)=0$, до чисто погранслойного решения, близкого к его нижнему корню $\varphi_1(x,t)$. С ростом переменной времени наблюдается обратное движение решения: от корня $\varphi_1(x,t)$ к корню $\varphi_3(x,t)$. Процесс изменений во времени $t$ повторяется. Библ. 9. Фиг. 18.

УДК: 519.62

MSC: Primary 35K57; Secondary 35B25, 35B40

Поступила в редакцию: 05.07.2001
Исправленный вариант: 07.06.2002


 Англоязычная версия: Computational Mathematics and Mathematical Physics, 2003, 43:2, 203–216

Реферативные базы данных:


© МИАН, 2024