RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал вычислительной математики и математической физики // Архив

Ж. вычисл. матем. и матем. физ., 2018, том 58, номер 8, страницы 148–156 (Mi zvmmf10770)

Эта публикация цитируется в 29 статьях

О точности разрывного метода Галеркина при расчете ударных волн

М. Е. Ладонкинаa, О. А. Неклюдоваb, В. В. Остапенкоc, В. Ф. Тишкинc

a 125047 Москва, Миусская пл., 4, ИПМ им. М.В. Келдыша РАН
b 630090 Новосибирск, пр-т Лаврентьева, 15, Ин-т гидродинамики СО РАН
c 630090 Новосибирск, ул. Пирогова, 2, Новосибирский гос. ун-т

Аннотация: Изучена точность разрывного метода Галеркина третьего порядка аппроксимации на гладких решениях при расчете разрывных решений квазилинейной гиперболической системы законов сохранения с ударными волнами, распространяющимися с переменной скоростью. В качестве примера рассмотрена аппроксимация системы законов сохранения теории мелкой воды. Показано, что подобно TVD- и WENO-схемам повышенного порядка аппроксимации на гладких решениях, разрывный метод Галеркина, несмотря на высокою точность на гладких решениях и при локализации ударных волн, снижает свой порядок сходимости до первого порядка в областях влияния ударных волн. Библ. 26. Фиг. 4.

Ключевые слова: гиперболическая система законов сохранения, разрывный метод Галеркина, уравнения теория мелкой воды, порядок интегральной и локальной сходимости.

УДК: 519.633

Поступила в редакцию: 05.03.2018

DOI: 10.31857/S004446690002009-0


 Англоязычная версия: Computational Mathematics and Mathematical Physics, 2018, 58:8, 1344–1353

Реферативные базы данных:


© МИАН, 2024