Аннотация:
Рассматривается некорректная задача минимизации приближенно заданного гладкого невыпуклого функционала на выпуклом замкнутом множестве в гильбертовом пространстве. Для класса задач, характеризуемого допустимым множеством с непустой внутренностью и гладкой границей, строятся регуляризующие процедуры, обеспечивающие оценку точности, пропорциональную уровню погрешности в исходных данных. Указанные процедуры порождаются классической схемой Тихонова и вариантом метода проекции градиента соответственно. Устанавливается необходимое условие существования процедур, регуляризующих класс экстремальных задач с равномерной на классе оценкой точности. Библ. 15.