RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал вычислительной математики и математической физики // Архив

Ж. вычисл. матем. и матем. физ., 2018, том 58, номер 11, страницы 1856–1864 (Mi zvmmf10873)

Эта публикация цитируется в 5 статьях

Статьи, опубликованные в английской версии журнала

Soliton solutions and conservation laws for an inhomogeneous fourth-order nonlinear Schrödinger equation

Pan Wanga, Feng-Hua Qib, Jian-Rong Yanga

a School of Management, Beijing Sport University, Information Road Haidian District, Beijing, China
b School of Information, Beijing Wuzi University, Beijing, China

Аннотация: In this paper, we investigate an inhomogeneous fourth-order nonlinear Schrödinger (NLS) equation, generated by deforming the inhomogeneous Heisenberg ferromagnetic spin system through the space curve formalism and using the prolongation structure theory. Via the introduction of the auxiliary function, the bilinear form, one-soliton and two-soliton solutions for the inhomogeneous fourth-order NLS equation are obtained. Infinitely many conservation laws for the inhomogeneous fourth-order NLS equation are derived on the basis of the Ablowitz–Kaup–Newell–Segur system. Propagation and interactions of solitons are investigated analytically and graphically. The effect of the parameters $\mu_1$, $\mu_2$, $\nu_1$ and $\nu_2$ on the soliton velocity are presented. Through the asymptotic analysis, we have proved that the interaction of two solitons is not elastic.

Ключевые слова: inhomogeneous generalized fourth-order nonlinear Schrödinger, equation infinitely many conversation laws, auxiliary function, Hirota method, symbolic computation.

Поступила в редакцию: 17.10.2017

Язык публикации: английский


 Англоязычная версия: Computational Mathematics and Mathematical Physics, 2018, 58:11, 1856–1864

Реферативные базы данных:


© МИАН, 2024