Аннотация:
Рассматривается двумерное уравнение реакция-диффузия в среде с разрывными характеристиками, доказываются существование, локальная единственность и асимптотическая устойчивость его стационарного решения, обладающего большим градиентом на границе раздела сред. Настоящая работа является развитием работ авторов, связанных с существованием и устойчивостью решений с внутренними переходными слоями краевых задач с разрывными слагаемыми на многомерные задачи. Доказательство существования и устойчивости решения в работе основано на методе верхних и нижних решений. Методы исследования, предложенные в настоящей работе, можно обобщить на уравнения произвольной размерности по пространственным переменным, а также на более сложные задачи, например, на задачи для систем уравнений. Результаты, полученные в работе, могут быть использованы для разработки численных алгоритмов решения жестких задач с разрывными коэффициентами. Библ. 27.
Ключевые слова:задача реакция-диффузия, внутренние слои, асимптотика решения, асимптотическая устойчивость по Ляпунову, принцип сравнения.
УДК:517.958
Поступила в редакцию: 19.09.2018 Исправленный вариант: 14.11.2018 Принята в печать: 14.11.2018