Аннотация:
Рандомизированные алгоритмы метода Монте-Карло строятся путем совместной реализации базовой вероятностной модели задачи и ее случайных параметров (случайной среды) с целью исследования параметрического распределения линейных функционалов. В настоящей работе используются статистическая ядерная оценка многомерной плотности распределения с “равномерным” ядром и метод расщепления, состоящий в том, что для каждой реализации среды моделируется некоторое число $n$ базовых траекторий. Строится оценка оптимального значения $n$ по критерию трудоемкости вычислений, сформулированному в настоящей работе. С помощью довольно сложных выкладок получены аналитические оценки соответствующей вычислительной эффективности. Библ. 17.
Ключевые слова:вероятностная модель, метод Монте-Карло, статистическое моделирование, рандомизированный алгоритм, метод двойной рандомизации, случайная среда, метод расщепления, статистическая ядерная оценка, трудоемкость функциональной оценки.
УДК:519.676
Поступила в редакцию: 19.11.2018 Исправленный вариант: 11.01.2019 Принята в печать: 11.01.2019