Аннотация:
Построена теория интегрального уравнения для радиальных токов в осесимметричной задаче дифракции на диске. В основе исследования лежат выделение главной части, непрерывно-обратимого оператора и доказательство его положительной определенности. Получены теоремы существования и единственности. Построен ортонормированный базис энергетического пространства положительно-определенного оператора. Каждый элемент базиса на границе ведет себя, как и неизвестная функция. Изучена структура матрицы интегрального оператора в данном базисе: матрица главной части оказывается единичной, а матрица следующего оператора — трехдиагональной. Библ. 16.
Ключевые слова:дифракция на диске, непрерывно-обратимый оператор, положительно-определенный оператор, преобразование Ханкеля, компактный оператор, ортонормированный базис, присоединенные функции Лежандра 1-го рода, матрица оператора.
УДК:
621.396:517.9
Поступила в редакцию: 01.04.2019 Исправленный вариант: 01.04.2019 Принята в печать: 10.04.2019