RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал вычислительной математики и математической физики // Архив

Ж. вычисл. матем. и матем. физ., 2019, том 59, номер 12, страница 2131 (Mi zvmmf11004)

Эта публикация цитируется в 1 статье

Higher-order accurate meshing of nonsmooth implicitly defined surfaces and intersection curves

J. W. Stanford, T.-P. Fries

Institute of Structural Analysis, Graz University of Technology Lessingstr. 25/II 8010 Graz, Austria

Аннотация: Представлен алгоритм построения расчетных сеток высокого порядка для негладких поверхностей, определяемых с помощью логических операций из набора гладких поверхностей. Входными данными являются набор неявных функций и ограничивающий параллелепипед, содержащий интересующую область. Такое определение геометрии позволяет рассматривать острые края как кривые пересечения изоповерхностей неявных функций. Ограничивающий параллелепипед разбивается на ячейки с помощью восьмеричного дерева, которое используется для поиска острых углов на граничных кривых и точек на кривых пересечения. После того, как точка на кривой пересечения найдена, выстраиваются острые ребра. Гладкие поверхности дискретизируются с помощью алгоритма марширующих кубов, а затем соединяются вместе с помощью метода подвижного фронта. Начальное кусочно-линейное приближение деформируется путем проецирования внутренних узлов лагранжевых элементов на поверхность или кривую пересечения. Для поддержания точности сетки особое внимание уделяется точному построению сетки для тангенциальных кривых пересечения. Оптимальные свойства сходимости для задач аппроксимации подтверждены в численных экспериментах.

Ключевые слова: конечные элементы высокого порядка, построение сеток, высокий порядок, неявные поверхности, проблемы пересечения.

УДК: 519.63

Поступила в редакцию: 26.06.2019
Исправленный вариант: 26.06.2019
Принята в печать: 05.08.2019

DOI: 10.1134/S0044466919120196


 Англоязычная версия: Computational Mathematics and Mathematical Physics, 2019, 59:12, 2093–2107

Реферативные базы данных:


© МИАН, 2024