Аннотация:
Исследуется специальный класс аппроксимаций непрерывных функций многих переменных на единичном координатном кубе. Основу построения этого класса составляет теорема Колмогорова о представлении функций указанного типа в виде конечной суперпозиции непрерывных функций одного переменного и их аппроксимация линейными комбинациями квадратичных экспонент (функций Гаусса). Эффективность такого представления основана на ранее доказанном автором утверждении о возможности сколь угодно точной аппроксимации на любом фиксированном конечном отрезке материнского вейвлета “мексиканская шляпа” линейной комбинацией двух функций Гаусса. Доказывается всюду плотность изучаемого класса аппроксимаций в классе непрерывных функций многих переменных на координатном кубе. Приводятся результаты численных экспериментов, подтверждающие эффективность аппроксимаций изучаемого класса на примере непрерывных функций двух переменных. Библ. 25. Фиг. 11. Табл. 3.
Ключевые слова:аппроксимация непрерывных функций многих переменных, функции Гаусса, квадратичные экспоненты, теорема Колмогорова.
УДК:519.651
Поступила в редакцию: 04.02.2019 Исправленный вариант: 11.11.2019 Принята в печать: 14.01.2020