Аннотация:
Излагаются полученные в школе академика А.М. Ильина результаты исследований асимптотического поведения решений задачи Коши для квазилинейного параболического уравнения с малым параметром при старшей производной вблизи особых точек. Рассматриваемое уравнение традиционно представляет интерес в качестве модели распространения нелинейных волн в диссипативных сплошных средах, а важность изучения решений вблизи особых точек объясняется, в частности, тем, что хотя сами сингулярные события занимают малое время, но именно они во многом определяют всю последующую эволюцию решений. В данном обзоре представлены пять типов особых точек, появление которых обусловлено различными начальными данными. Библ. 50.
Ключевые слова:квазилинейное параболическое уравнение, уравнение Бюргерса, малый параметр, задача Коши, особая точка, сингулярная асимптотика, слияние ударных волн, градиентная катастрофа, сборка Уитни, преобразование Коула–Хопфа, функция Пирси, универсальное решение Ильина, лагранжева особенность, краевая особенность, слабый разрыв, автомодельность, многомасштабная асимптотика, асимптотики Пуанкаре и Эрдейи, бисингулярная задача, ренормализация, метод согласования.
УДК:
517.956:517.958
Поступила в редакцию: 05.12.2018 Исправленный вариант: 14.12.2019 Принята в печать: 14.01.2020