Аннотация:
Приводится обзор результатов исследований последних лет по необходимым и достаточным условиям сходимости с заданной скоростью методов аппроксимации решений нерегулярных операторных уравнений. Изложение ведется в контексте классических прямых и обратных теорем теории приближений. Близость получаемых необходимых и достаточных условий позволяет дать почти полную характеристику решений, на которых достигается та или иная скорость сходимости исследуемых методов. В числе рассматриваемых задач нерегулярные линейные и нелинейные операторные уравнения, а также некорректные задачи Коши для дифференциально-операторных уравнений первого и второго порядка. Рассматриваются процедуры устойчивой аппроксимации решений нерегулярных линейных уравнений общего вида, классы разностных методов регуляризации и метод квазиобращения для решения некорректных задач Коши, а также класс итеративно регуляризованных методов типа Гаусса–Ньютона для решения нерегулярных нелинейных операторных уравнений. Библ. 61.
Ключевые слова:нерегулярное уравнение, нелинейное уравнение, итерационные методы, регуляризация, некорректная задача Коши, конечно-разностные методы, скорость сходимости, условие истокопредставимости.
УДК:519.63
Поступила в редакцию: 24.10.2019 Исправленный вариант: 24.10.2019 Принята в печать: 11.02.2020