Замечание об апостериорных оценках ошибки для численных решений эллиптических уравнений с кусочно-постоянным коэффициентом реакции, имеющим значительные скачки
Аннотация:
Получены гарантированные, робастные, вычисляемые апостериорные оценки погрешности приближенных решений уравнения $\Delta \Delta u + {{\kappa }^{2}}u = f$ с постоянным на каждой подобласти разбиения области – в частности, на каждом конечном элементе – коэффициентом $\kappa \geqslant 0$, который хаотически изменяется между подобластями в достаточно широких пределах. Для конечно-элементных решений эти оценки робастны, сохраняя точность при $\kappa \in [0,{\text{c}}{{{\text{h}}}^{{ - 2}}}]$, $c = {\text{const}}$, и обладают некоторыми другими полезными свойствами. Коэффициенты перед типичными нормами в их правых частях лишь незначительно хуже полученных ранее в случае постоянных $\kappa \equiv {\text{const}}$. Оценки могут быть вычислены без предварительного использования процедур уравновешивания тестовых вектор-функций моментов. Техника их вывода сходна с использованной в предыдущих работах автора (2016–2019) для получения не улучшаемых по порядку апостериорных оценок погрешности. Библ. 33.
Ключевые слова:апостериорные оценки погрешности, сингулярно возмущенные эллиптические уравнения 4-го порядка, метод конечных элементов, кусочно постоянный коэффициент реакции, неулучшаемые по порядку оценки точности.
УДК:519.632.4
Поступила в редакцию: 23.10.2019 Исправленный вариант: 28.05.2020 Принята в печать: 07.07.2020