Аннотация:
Современные алгоритмы, основанные на искусственных нейронных сетях, крайне полезны при решении множества сложных задач компьютерного зрения, робастного управления, анализа звука и текстов на естественном языке в приложениях обработки данных, робототехники и т.д. Однако для успешного внедрения нейросетевого подхода в критически значимые системы, например, в медицине или в судебной практике, необходима понятная человеку интерпретация внутренней архитектуры и процесса принятия решений сетью. В последние годы особую распространенность для создания интерпретируемых моделей глубокого обучения приобрели методы анализа, основанные на различных техниках визуализации, применяемых к графу вычислений, профилю функции потерь, к параметрам отдельных слоев сети и даже к отдельным нейронам. В данном обзоре систематизируются существующие математические методы анализа и объяснения поведения соответствующих алгоритмов и приводятся постановки соответствующих задач вычислительной математики. Исследование и визуализация глубоких нейронных сетей являются новыми, малоизученными, и в то же время бурно развивающимися областями. Рассмотренные методы позволяют заглянуть вглубь и лучше понять работу нейросетевых алгоритмов.
Библ. 57. Фиг. 5. Табл. 2.
Ключевые слова:искусственная нейронная сеть, интеллектуальный анализ данных, машинное обучение, глубокое обучение, визуализация искусственной нейронной сети.
УДК:519.65
Поступила в редакцию: 24.11.2020 Исправленный вариант: 24.11.2020 Принята в печать: 11.12.2020