Аннотация:
Исследуются свойства смеси экспертов. Смесь экспертов – это ансамбль локальных аппроксимирующих моделей, которые являются экспертами и шлюзовой функцией, которая взвешивает данные экспертов. В качестве экспертов рассматриваются линейные модели, а в качестве шлюзовой функции – нейронная сеть с функцией на последнем слое. Анализируются разные априорные распределения для каждого эксперта. Предложен метод, который учитывает связь между априорными распределениями разных экспертов. Для поиска оптимальных параметров локальных моделей и шлюзовой функции используется ЕМ-алгоритм. Рассматривается задача распознавания окружностей на изображении. Каждый эксперт аппроксимирует одну окружность на изображении: находит координаты центра окружности и радиус окружности. Для анализа предложенного метода проводится вычислительный эксперимент на синтетических и реальных данных. В качестве реальных данных используются изображения радужки глаза, которые применяются в задачах распознавания радужки глаза.
Библ. 23. Фиг. 13. Табл. 1.
Ключевые слова:смесь экспертов, байесовский выбор модели, априорное распределение.
УДК:519.72
Поступила в редакцию: 26.11.2020 Исправленный вариант: 26.11.2020 Принята в печать: 11.03.2021