Аннотация:
Дано новое определение производной дробного порядка на основе интерполирования производных натурального порядка. Главным преимуществом нового определения является локальность таких производных. То есть значение производной в точке не зависит от области определения функции, как в случаях производных Римана–Лиувилля и Капуто. Это позволяет строить и обосновывать простые вычислительные методы решения уравнений, содержащих такие производные. Более того, такое определение позволяет обобщить понятие производной на случай переменного порядка дифференцирования. Рассмотрен класс уравнений, содержащих введенные производные. Доказана однозначная разрешимость исходных уравнений и обоснован квадратурно-разностный метод для их решения. Получены эффективные оценки погрешности приближенных решений. Теоретические выводы подтверждены численным решением модельной задачи.
Библ. 54. Табл 1.