Аннотация:
Рассматривается метод сеточной адаптации, примененный к проблеме бифуркации в неравновесном уравнении Ричардса, возникающем в задачах гидрологии. Расширение этой модели дифференциальных уравнений с частными производными для водонасыщенности с учетом дополнительных эффектов динамической памяти приводит к появлению дополнительного члена третьего порядка – смешанной производной по пространству-времени в дифференциальном уравнении. В случае одномерного пространства предсказывается образование крутых немонотонных нелинейных волн, зависящих от параметра неравновесности. В двумерном пространстве анализ по параметру неравновесности и частоте при малом возмущающем члене предсказывает, что волны могут стать неустойчивыми, тем самым инициируя так называемые гравитационные пальцы. Для выявления крутых подвижных фронтов в решениях нестационарных уравнений используется достаточно изощренный метод построения адаптивной подвижной сетки, основанный на масштабируемой следящей функции.
Библ. 25. Фиг. 10.
Ключевые слова:бегущие волны, (не)монотонность, структуры типа “палец”, пористые материалы, адаптивные подвижные сетки.
УДК:519.63
Поступила в редакцию: 10.10.2021 Исправленный вариант: 03.03.2022 Принята в печать: 11.04.2022