Аннотация:
Рассматривается введенная авторами функция $A$, зависящая от одного комплексного, двух действительных переменных и еще одного аргумента, задающего тривиальную или собственную подгруппу трехмерной собственной лоренцевой группы и, таким образом, являющегося действительным числом или парой действительных чисел. Первые три аргумента при этом определяют пространства представления и базисные функции в этих пространствах. Показано, что ее частные значения можно выразить через волновые кулоновские функции или гипергеометрическую функцию Аппеля $F_1$. Полученная формула преобразования функции $A$ используется для вывода континуальной теоремы сложения для этой функции и вычисления значения одномерного интегрального преобразования типа Фурье–Меллина произведения двух кулоновских функций – его результат выражается через функцию $F_1$.
Библ. 31.
Ключевые слова:волновые кулоновские функции, функция Аппеля $F_1$, трехмерная собственная лоренцева группа, представление группы, ядро интегрального оператора, интегральное преобразование типа Фурье–Меллина.
УДК:517.588
Поступила в редакцию: 15.06.2021 Исправленный вариант: 13.02.2022 Принята в печать: 11.05.2022