Аннотация:
Проблема параметров интеграла Кристоффеля–Шварца для конформного отображения $f$ канонической области на $L$-образную решена в аналитическом виде при произвольных геометрических параметрах области. Неизвестный прообраз представлен в виде ряда по степеням малого параметра с явно выписанными коэффициентами, для которых получена оценка их модуля. Найдены асимптотики для эффекта кроудинга (скучивания прообразов), ярко выраженного для удлиненной области. Для вычисления отображения $f$ и обратного к нему $f^{-1}$ даны ряды с явными коэффициентами, области сходимости которых в совокупности покрывают всю (замкнутую) отображаемую область. Сочетание $f$ с дробно-линейными отображениями и эллиптическим синусом позволило получить отображение полуплоскости, круга и прямоугольника на $L$-образную область. Численная реализация построенных отображений показала высокую эффективность применяемых методов.
Библ. 50. Фиг. 13. Табл. 3.
Ключевые слова:$L$-образная область с произвольными параметрами, интеграл Кристоффеля–Шварца, проблема параметров, кроудинг, аналитические методы, асимптотики при удлинении области.
УДК:517.95
Поступила в редакцию: 11.03.2022 Исправленный вариант: 08.05.2022 Принята в печать: 14.06.2022