Аннотация:
В статье рассмотрена линейная дифференциальная игра преследования при условии, что на управление убегающего накладывается интегральное ограничение, а преследователь использует импульсное управление. Эти импульсные воздействия на объект осуществляются в заранее заданных моментах времени, и соответствующее управление представляется при помощи дельта-функции Дирака. Изучаются линейные конфликты, описываемые системой обыкновенных дифференциальных уравнений, траектории которых имеют скачки в определенных моментах времени. Терминальное множество представляется в виде цилиндра в $n$-мерном евклидовом пространстве. Для решения поставленной задачи применяется метод разрешающей функции. Для доказательства достижения нижней грани используется теория опорных функций. Благодаря этому факту, вместо квазистратегии применяется почти стробоскопическая стратегия и указывается способ построения этой стратегии. Приведен пример нелинейной правой части.
Библ. 20.