Ж. вычисл. матем. и матем. физ.,
2023, том 63, номер 7,страницы 1109–1127(Mi zvmmf11584)
Уравнения в частных производных
Локальная разрешимость, разрушение и гёльдеровская регулярность решений некоторых задач Коши для нелинейных уравнений теории волн в плазме. III. Задачи Коши
Аннотация:
Рассматриваются три задачи Коши для уравнений соболевского типа из теории ионно-звуковых и дрейфовых волн в плазме, объединенных общей линейной частью. Данные задачи сводятся к эквивалентным интегральным уравнениям. Для двух задач доказывается существование непродолжаемых решений, а для третьей – существование локального во времени решения. Для одной из задач модифицированным методом Х.А. Левина получены достаточные условия разрушения решения за конечное время и найдена оценка сверху на время разрушения решения. Для другой задачи методом нелинейной емкости С.И. Похожаева получен результат о разрушении решения за конечное время и два результата об отсутствии даже локальных решений, а также получена оценка сверху для времени разрушения решения.
Библ. 5.
Ключевые слова:нелинейные уравнения соболевского типа, разрушение, blow-up, локальная разрешимость, нелинейная емкость, оценки времени разрушения.
УДК:517.95
Поступила в редакцию: 29.11.2021 Исправленный вариант: 03.03.2023 Принята в печать: 30.03.2023